Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers.

نویسندگان

  • Jacob Notbohm
  • Ayelet Lesman
  • David A Tirrell
  • Guruswami Ravichandran
چکیده

During processes such as development and cancer metastasis, cells migrate into three-dimensional fibrous matrices. Previous studies have speculated on the mechanical forces required for migration by observing matrix fiber alignment, densification, and degradation, but these forces remain difficult to quantify. Here we present a new experimental technique to simultaneously measure full-field 3D displacements and structural remodeling of a fibrous matrix, both of which result from cellular forces. We apply this "2-in-1" experimental technique to follow single cells as they invade a physiologically relevant fibrin matrix. We find that cells generate tube-like structures in the matrix by plastically deforming their surroundings, and they re-use these tubes to extend protrusions. Cells generate these tubular structures by applying both pulling and pushing forces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites

Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...

متن کامل

Quantifying cellular traction forces in three dimensions.

Cells engage in mechanical force exchange with their extracellular environment through tension generated by the cytoskeleton. A method combining laser scanning confocal microscopy (LSCM) and digital volume correlation (DVC) enables tracking and quantification of cell-mediated deformation of the extracellular matrix in all three spatial dimensions. Time-lapse confocal imaging of migrating 3T3 fi...

متن کامل

Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres

General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...

متن کامل

Ultrasonic welding of thermoset matrix composites reinforced with glass fibers using a co-cured retaining layer

In this paper, ultrasonic welding of glass fiber reinforced thermoses, co-cured whit a thermoplastic has been studied. Co-curing process forms a connection between the thermoset and the thermoplastic while curing the composite. Considering that the calculated stress should not be related to the dimensions of the sample, a horn with a tip dimension smaller than the standard overlap was used. The...

متن کامل

The Effect of Volume Fractions on Hole Stress Concentration in Composite Lamina Subjected to Matrix Plasticity

In this paper, the stress concentration around a hole in the single layer composite materials with long fibers is examined. The single layer has an infinite length, limited with and instant thickness and is loaded by a constant tension force p at infinity. The width of the lamina is considered to be finite and bears a hole as a defect. Due to presence of excessive shear stress in the matrix bay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative biology : quantitative biosciences from nano to macro

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2015